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Abstract

This	case	study	was	a	joint	effort	between	one	of	the	world’s	largest	oil	and	gas
companies	and	MemComputing.	It	examines	the	optimization	of	a	complex	scheduling	
problem	for	the	maritime	transportation	of	cargo	to	offshore	facilities,	such	as	offshore	
platforms	and	drilling	rigs.	The	problem	involves	balancing	the	delivery	of	goods	and	
fuel	from	an	onshore	dock	location	to	various	offshore	facilities	within	a	30-day	period.	
Using	Integer	Linear	Programming	(ILP)	and	data	from	the	customers	benchmark,	a	
mathematical	model	was	built	to	represent	the	problem.	The	model	was	run	on	a	
leading	commercial	solver	and	the	MEMCPU	Platform.	The	problem	proved	to	be	
intractable	for	the	commercial	solver,	while	the	MEMCPU	Platform	delivered	highly	
optimized	solutions	in	under	an	hour.	The	results	of	the	optimization	showed	a	16%	
increase	in	the	delivery	of	goods,	a	42%	reduction	in	the	number	of	required	ships,	and	
a	48%	reduction	in	the	number	of	overall	transits.	These	optimized	routes	
demonstrated	the	potential	for	$1.5M	in	monthly	cost	savings	and	a	18	kt	reduction	in	
carbon	emissions.	This	paper	highlights	the	potential	of	the	MEMCPU	Platform	in	
addressing	complex	scheduling	problems	while	delivering	tangible	benefits.
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1. Introduction
1.1	Customer

The customer	is	a	large	Integrated	Energy	Company	with	a	significant	hydrocarbon	production	portfolio.	
The	company	has	operations	and	projects	in	several	countries	around	the	world,	including	the	United	
States,	the	United	Kingdom,	Azerbaijan,	and	Trinidad,	among	others.

They	operate	several	offshore	production	platforms	and	drilling	rigs	and	uses	advanced	technologies	to	
ensure	the	safe	and	efficient	extraction	of	hydrocarbons.	The	company	also	has	a	strong	focus	on	safety	
and	environmental	concerns	and	is	committed	to	minimizing	the	impact	of	its	offshore	hydrocarbon	
operations	on	the	ocean	and	coastal	environments.

1.2 THE MEMCOMPUTING TECHNOLOGY

Memcomputing	Self-Organizing	Gates	(SOGs)	are	a	patented	computing	paradigm	that	represents	a	novel	
approach	to	performing	information	processing	and	computation.	It	was	invented	by	Dr.	Fabio	L.	Traversa
and	Dr.	Max	Di	Ventra	at	UC	San	Diego	in	2015	[1].	

The	SOGs	are	a	collection	of	discrete	physical	elements	that	store	and	manipulate	data	in	a	manner	similar	
to	that	of	conventional	computer	memory,	but	they	also	possess	the	ability	to	perform	computation.	The	
paradigm	shift	introduced	is	that	the	SOGs	are	connected	and	form	a	network	to	communicate	among	
themselves	while	computing	therefore	working	in	an	ultra-high	parallelized	fashion	to	solve	the	problem.	
The	outcome	depends	on	both	the	information	stored	in	the	SOGs	and	the	information	exchanged	with	
other	SOGs	in	the	circuit.	This	enables	a	collective	type	of	computation	that	is	somewhat	similar	to	how	the	
human	brain	operates.	Similar	to	neurons	in	the	human	brain	each	SOG	responds	to	changes	in	other	SOGs	
while	processing	because	they	are	inter-connected.	This	connectivity	creates	correlations	among	SOGs	
that	can	span	across	the	entire	network.	The	memcomputing	circuit	can	establish	correlations	between	
SOGs	at	scale	(easily	100s	of	millions	of	SOGs	in	a	circuit).		



1.3	The	MEMCPU™ Platform

The cloud-based MEMCPU Platform, released in 2019, is a virtual computing solution for solving
complex optimization problems in areas such as logistics, scheduling, resource allocation, and more. It
is designed to deliver faster, more efficient solutions compared to traditional optimization methods
such as mathematical programming and heuristics.

The MEMCPU Platform uses a combination of hardware and software technologies, including
memcomputing, to solve complex problems in real-time. The technology is designed to work with
existing computing systems. Problems are defined in a mathematical model formulated using Integer
Linear Programming (ILP). The ILP model is sent to the MEMCPU Platform where the circuit
configures itself, similar to an FPGA, to exactly match the ILP. Reconfiguration takes nanoseconds, and
then the SOGs begin simulating the dynamics of the ILP model. What this means is that the MEMCPU
Platform leverages the collective nature of the SOGs, solving the problem in a single MEMCPU Cycle.
The MEMCPU Platform is a cutting-edge technology for solving complex optimization problems in a
variety of industries. Its ability to deliver faster and more efficient solutions compared to traditional
methods makes it a valuable tool for organizations looking to improve their decision-making processes
and optimize their operations.
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2.2 MANUAL SCHEDULING PROCESS

Optimize	cargo	delivery	to	offshore	facilities	in	the	Gulf	of	
Mexico	and	pick	up	and	return	cargo	to	the	port.	Vendors	
provide	delivery	dates	when	certain	shipments	will	be	
available	at	the	port	and	identify	the	intended	offshore	
facility.	Schedulers	work	with	the	offshore	facilities	to	
determine	the	desired	delivery	date	of	the	cargo	required	
by	the	various	offshore	facilities.	From	this,	the	
schedulers	assign	which	ships,	from	a	fleet	of	“slow”	and	
“fast”	ships	(see	sidebar),	visit	which	offshore	facilities	
and	then	assign	the	cargo	accordingly.	The	use	case	for	
this	problem	was	based	on	actual	schedules	from	a	
previous	month.	The	most	challenging	part	of	this	
problem	is	scheduling	the	cargo	shipment.	There	are	
3500	cargo	items	which	must	go	to	15	offshore	facilities,	
and	each	item	has	a	specific	delivery	time	limit.	The	goal	
is	to	find	the	right	combination	of	ships	to	minimize	the	
number	of	transits;	thus,	the	complexity	of	this	problem	
grows	exponentially	with	the	number	of	cargo	items.

2. The Problem Defined
2.1	Overview	

Enhancing	the	efficiency	of	logistics	operations	leads	to	improved	safety,	reduced	operating	costs,	and	a	
decrease	in	carbon	emissions.	As	part	of	their	commitment	to	becoming	carbon	neutral,	the	company's	
logistics	team	is	continuously	working	to	optimize	schedules	and	minimize	risk.

In	this	case	study,	we	examine	the	maritime	transportation	of	cargo	to	offshore	platforms	and	rigs	in	the	
Gulf	of	Mexico,	which	require	a	constant	supply	of	goods	and	resources	to	sustain	their	operations.	These	
deliveries	are	scheduled	in	advance	to	ensure	that	the	offshore	facilities	have	the	necessary	supplies	at	the	
right	time.	However,	the	complexity	and	large	scale	of	these	operations,	coupled	with	critical	time	
windows,	make	scheduling	a	challenging	task	for	which	no	automation	exists	today.	This	process	is	
currently	performed	manually	by	experienced	scheduling	personnel.	

• These	offshore	platforms	require	a	variety	of	consumable	goods	and	services.	These	include;
• Large	quantities	of	fuel	to	power	the	offshore	facility	and	its	systems.
• Lubricants	to	maintain	various	machinery	and	equipment.	
• A	variety	of	chemicals,	including	muds,	inhibitors,	polymers,	surfactants,	and	biocides.	
• Large	quantities	of	water	for	drilling,	cooling,	and	injecting	into	wells	to	maintain	pressure.	
• Large	quantities	of	cement	used	to	stabilize	wells	and	prevent	leaks.
• Drilling	supplies	like	drill	bits	and	drilling	pipes.
• Spare	parts,	and	other	supplies.		
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Slow	Ships	are	the	workhorses	that	deliver	the	vast	majority	of	the	cargo.	Fast	Ships	are	used	for	ad	
hoc	deliveries	when	something	might	be	needed	as	soon	as	possible,	on	emergency,	or	just	additional	
coverage	of	cargo.



2.3	Constraints

Constraints	represent	restrictions	that	the	scheduler	must	adhere	to	for	a	successful	schedule.

These	constraints	fall	into	the	five	following	categories.

• At	the	dock
• On	the	ships
• At	offshore	facilities
• Route	constraints
• Dynamic	constraints

The	following	subsections	detail	the	constraints.

7

Cargo	
Cargo	is	available	
within	a	specified	
window	of	time.	

(Resolution	of		a	few	
hours)	

	

	 Fuel	
Available	fuel	at	the	
dock	is	“infinite.”	

Fuel	is	uploaded	to	the	
ship,	never	offloaded.		

	

2.3.1 Constraints at the dock

Cargo	
Total	allowed	weight	and	
volume	are	independent	

of	the	fuel	load.		
Total	cargo	weight	must	
be	less	than	or	equal	to	
the	Max	cargo	weight.	
Total	cargo	volume	must	
be	less	than	or	equal	to	
the	Max	cargo	volume.		
Cargo	will	ship	from	the	
dock	to	the	offshore	

facilities		and	vice-versa.	
Cargo	will	also	ship	
between	the	offshore	

facilities.	
Not	more	than	50%	of	the	
deck	space	can	be	used	on	

any	of	the	vessels	

	 Fuel	
The	total	allowed	fuel	
weight	and	volume	
are	independent	of	

the	cargo.		
Total	fuel	weight	

must	be	less	than	or	
equal	to	the	Max	fuel	

weight.	
Total	fuel	volume	
must	be	less	than	or	
equal	to	the	Max	fuel	

volume.		
Fuel	only	ships	from	
the	dock	to	the	
offshore	facilities.	

		

	

2.3.2 Constraints on the ships
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2.3.3 Constraints at the offshore facilities

2.3.4 Constraints on the routes

Cargo	
Cargo	must	arrive	within	
a	prescheduled	time	

window.		
(Resolution	to	a	few	

hours)	
Offshore	facilities	can	
only	accept	shipments	
when	the	weather	is	

suitable,	and	the	dock	is	
within	a	reasonable	
transport	distance.		

	

Fuel	
Fuel	consumption	
occurs	at	a	constant	

rate.		
The	fuel	level	must	
remain	above	the	Min	

fuel	level.	
The	fuel	level	cannot	
exceed	the	Max	fuel	

level.		
Fuel	consumption	can	
be	affected	by	the	

weather.		

	

Some	ships	cannot	reach	
all	offshore	facilities.		
Some	offshore	facilities	
can	be	forbidden	for	a	
window	of	time	due	to	

the	weather.		
The	time	to	go	from	one	
offshore	facility	to	

another	is	independent	of	
the	weather.		

Ships	can	remain	at	the	
dock	indefinitely.	

Ships	at	the	docks	remain	
for	a	minimum	time	
(fixed	operations	and	
maintenance)	plus	the	
time	proportional	to	the	

lifts.		
Ships	can	remain	at	an	
offshore	facility	for	a	
minimum	time	(fixed	

operations)	plus	the	time	
proportional	to	the	lifts.	

	

There	is	only	one	
port/dock	for	this	

case	study.	
(More	docks	can	be	

added.)	
A	ship	at	a	dock	has	a	

cost	per	day.		
A	ship	at	an	offshore	

facility	has	no	
associated	cost.		
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2.3.5	Dynamic	constraints

Unexpected	events	and	emergencies	provide	additional	challenges,	for	example,	weather,	
maintenance,	crew	availability,	etc.	MemComputing	analyzed	one	year’s	worth	of	data	to	understand	
the	average	impact	of	these	events.	Since	the	impact	of	these	events	during	the	30-day	period	studied	
was	less	than	the	average,	the	stricter	percentages	in	the	table	below	were	included	in	the	model.

Average Wait Times Per Ship At Fourchon % at Fourchon Offshore Facilities % at Offshore Facilities
Maintenance 2.25                     0% -                                   
Maneuvering 216.03                 9% 221.32                             25%
Standby -                      108.50                             12%
Tank Cleaning 155.20                 7% -                                   
Waiting 1,888.64              83% 477.07                             53%
Crew Not Avail 17.56                   1% 4.12                                 0%
Weather -                      91.54                               10%
Avg. Wait Times Per Ship (mins) 2,279.68              100% 902.55                             100%

Avg. Wait Times Per Ship (Hours) 37.99               15.04                            



3.1	Relevant	NP-Hard	Problems

3.1.1	The	Travelling	Salesperson	Problem

The	Traveling	Salesperson	Problem	(TSP)	is	a	classical	combinatorial	optimization	problem	that	involves	
finding	the	shortest	possible	route	that	visits	a	given	set	of	cities	and	returns	to	the	starting	city.	The	
problem	can	be	formalized	as	follows:	given	a	set	of	cities	and	the	distances	between	each	pair	of	cities,	
find	the	shortest	possible	route	that	visits	each	city	exactly	once	and	returns	to	the	starting	city.

TSP	is	one	of	the	most	well-known	and	well-studied	problems	in	the	field	of	combinatorial	optimization.	It	
is	a	NP-hard	problem,	meaning	that	finding	an	exact	solution	in	a	reasonable	amount	of	time	is	
computationally	intractable	for	large	instances	of	the	problem.	As	a	result,	approximate	solutions	or	
heuristics	are	often	used	to	find	good	solutions	in	practice.

3.1.2	The	Bin	Packing	Problem

The	bin	packing	problem	is	another	classic	combinatorial	NP-hard	optimization	problem.	The	problem	
consists	of	allocating	items	of	different	sizes	and	weights	into	bins	where	the	number	of	bins	used	must	be	
minimized	and	cannot	exceed	the	capacity	of	each	of	them.	Many	variants	of	this	problem	are	deeply	
studied,	and	the	literature	provides	a	large	choice	of	exact	and	approximation	algorithms	specialized	for	
this	problem.

3.1.3	The	Scheduling	Problem

Scheduling	is	a	general	combinatorial	problem	that	includes	several	NP-hard	problems	such	as	interval	
scheduling,	job	shop	scheduling,	etc.	A	generic	scheduling	problem	in	industrial	applications	typically	
represents	a	challenge	where	even	approximations	are	hard	to	find	in	the	available	time.	For	example,	
rescheduling	flights	due	to	weather	conditions	is	a	huge	challenge	for	airline	companies.

These	problems	have	many	real-world	applications,	including	vehicle	routing,	logistics,	scheduling,	
planning,	and	resource	allocation.		These	problems	are	extensively	studied,	and	research	fields	are	devoted	
to	working	on	algorithms	and	heuristics	developed	to	solve	them.
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3. Combinatorial Nature



3.2	Relating	the	Case	Study	To	The	NP-Hard	Problems

Consider	the	problem	addressed	here.	Multiple	ships	must	visit	multiple	offshore	facilities,	which	is	a	
multi-TSP	problem.	Add	that	a	collection	of	goods	must	be	delivered	to	these	facilities,	with	a	specific	
availability	date	on	the	port	and	“no-later	than”	delivery	date	for	goods	to	an	offshore	facility.	The	goods	
and	fuel	are	destined	for	different	offshore	facilities.		For	fuel,	the	starting	fuel	level,	the	minimum,	and	
maximum	fuel	levels,	and	the	consumption	rate	for	each	offshore	facility	must	accounted	for	in	the	model.		
Additionally,	the	cargo	and	fuel	must	be	packed	onto	several	ships;	therefore,	the	bin	packing	problem	is	
also	represented.

All	these	problems	need	to	be	solved	at	once	since	they	share	variables.	This	makes	this	cargo	delivery	
problem	far	more	complex	than	an	individual	NP-hard	problem.

A	solution	to	the	problem	at	the	scale	required	by	the	customer is	intractable	for	even	the	best-in-class	
commercial	optimization	problem	solver	(as	shown	later).	To	solve	this	problem	using	traditional	
methods,	the	problem	must	be	broken	up,	and	some	constraints	or	variables	must	be	ignored.	A	solution	
can	be	provided,	but	it	will	be	an	approximation.	In	many	cases,	such	an	approximation	may	not	be	better	
than	a	random	solution.

The	MEMCPU	Platform	can	address	the	entire	problem	at	the	required	scale.	To	understand	how	and	why	
MemComputing	is	different	than	these	other	methods	and	why	it	is	not	affected	by	the	exponential	nature	
of	combinatorial	optimization	problems,	view	our	video	that	compares	MemComputing	to	Branch	and	
Bound	[2].	Further	reference	material	can	be	found	at	the	end	of	this	document	[3-7].
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3.3	Conventional	Approach:	Branch	and	Bound

Leading	edge	commercial	optimization	solvers	use	Branch	and	Bound,	a	general	algorithmic	framework	for	
solving	combinatorial	optimization	problems.	It	is	also	used	for	problems	where	finding	an	exact	solution	
is	computationally	intractable	but	finding	an	approximation	or	a	good	upper	bound	on	the	optimal	solution	
is	possible.

The	basic	idea	of	Branch	and	Bound	is	to	divide	the	problem	into	smaller	subproblems	and	then	solve	each	
subproblem	separately.	The	algorithm	works	by	exploring	the	solution	space	in	a	systematic	way	and	
eliminating	parts	of	the	solution	space	that	are	not	feasible.	At	each	step,	the	algorithm	decides	which	
branch	to	explore	next,	and	it	keeps	track	of	the	best	solution	found	so	far.

The	"bound"	in	Branch	and	Bound	refers	to	the	best	solution	that	has	been	found	so	far,	and	it	provides	an	
upper	bound	on	the	optimal	solution.	This	bound	is	used	to	prune	the	search	space	and	to	eliminate	
branches	that	are	unlikely	to	contain	the	optimal	solution.	This	makes	the	algorithm	more	efficient	and	
helps	to	avoid	exploring	parts	of	the	solution	space	that	are	not	relevant.

Branch	and	Bound	is	widely	used	in	practice,	and	it	is	especially	well	suited	for	problems	where	the	
solution	space	is	large	and	complex.	It	is	also	used	for	problems	with	multiple	constraints,	as	the	algorithm	
can	be	easily	adapted	to	handle	a	wide	range	of	different	types	of	constraints.	However,	the	efficiency	of	
the	algorithm	depends	on	the	quality	of	the	bound	and	the	efficiency	of	the	branching	strategy,	and	it	can	
be	difficult	to	find	a	good	solution	in	some	cases.



3.4	Solutions:	Approximate	vs	Optimal

An	optimal	solution	is	the	best	possible	solution	to	a	problem,	while	an	approximate	solution	is	any	
feasible	solution	(i.e.,	satisfying	all	constraints)	that	can	be	close	to,	but	not,	the	optimal	solution.	In	
combinatorial	optimization	problems,	finding	an	optimal	solution	is	often	computationally	intractable	for	
current	computers,	due	to	the	exponential	growth	of	the	number	of	possible	combinations	as	the	size	of	
the	problem	increases.	As	a	result,	finding	an	approximate	solution,	which	can	be	far	from	the	optimal,	is	a	
common	outcome	for	these	solvers.

The	quality	of	an	approximate	solution	is	usually	measured	by	how	close	it	is	to	the	optimal	solution,	either	
in	terms	of	the	objective	function	being	optimized	or	in	terms	of	other	performance	metrics.	A	good	
approximate	solution	should	provide	a	solution	that	is	close	to	the	optimal	solution,	with	a	bounded	error	
or	with	a	high	probability	of	being	close	to	the	optimal	solution.

Poor	approximate	solutions	lead	to	inefficiencies	in	effort,	use	of	resources,	and	increased	costs.			Attempts	
to	solve	logistics	problems	are	well	documented.	For	example,	Parabas conducted	a	study	for	optimizing	
helicopter	transport	to,	from,	and	between	oil	rigs	[8]	and	MemComputing	studied	the	same	problem	
showing	how	MemComputing	provides	a	near	optimal	solution	[9].	(Additional	examples	can	be	found	
online	[7].)
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Building	the	mathematical	model	begins	with	identifying	the	“backbone”	or	core	of	the	problem.	This	is	
done	by	analyzing	the	combinatorial	nature	of	the	problem	and	determining	the	set	of	decision	variables,	
objectives,	and	related	constraints	involved.	This	was	a	collaborative	process	between	the	MemComputing	
and	customer	teams.	

4.1	Space-Time	Graph
We	start	by	developing	a	Space-Time	Graph	for	a	given	ship,	S.	This	helps	us	understand	the	position	of	the	
vessels	over	time.	All	ships	begin	at	the	dock,	visit	one	or	more	facilities	and	return	to	the	dock.	
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4. Developing the Mathematical Model

4.2	Variables

We	then	identify	the	main	variables	for	the	mathematical	model.	



4.3	Constraints
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4.3.1	Loading	and	Unloading	of	Fuel

4.3.1.1	Loading	and	Unloading	of	Fuel	From	a	Ship

This	section	details	the	constraints	that	must	be	satisfied	when	loading	and	unloading	fuel	to	or	from	any	
cargo	ship.

4.3.1.2	Unloading		fuel	to	an	offshore	facility	and	fuel	consumption

The	cargo	ships	carry	enough	fuel	to	refuel	the	offshore	facilities	it	visits.	We	must	track	the	fuel	
consumption	of	the	facility.	We	must	ensure	that	the	facility’s	fuel	level	does	not	fall	below	the	minimum	
and	stays	within	the	maximum.
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4.3.2	Loading	and	Unloading	of	Goods

There	are	many	complexities	involving	the	loading	and	unloading	of	the	goods.	The	schedule	includes	the	
earliest	date	that	a	good	may	be	available	at	the	dock	and	the	latest	date	for	delivery	to	the	offshore	facility.	
The	max	weight	and	volume	allowed	for	all	freight	(collection	of	goods)	can	be	set.	Varying	the	right	hand	
side	of	constraints	8	and	9	we	can	lower	the	load	of	the	maximum	ship	capacity	by	50%	as	requested	by	
the	customer.
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4.4	Forcing	Consistency	On	The	Routes

The	routes,	or	transits,	that	a	ship	makes	between	the	dock	and	to,	from,	and	between	offshore	facilities	
must	be	managed	carefully.	The	complexity	is	fairly	obvious	when	you	review	the	constraints	we	
developed	below.	

4.5	The	Cost/Objective	Function

The	objective	function	represents	the	desired	optimization	goals.	For	this	problem,	we	want	to	minimize	
the	time	required	for	the	ships	to	complete	their	routes.	To	ensure	that	the	delivery	of	goods	is	enforced,	
there	is	a	penalty	in	the	objective	function	for	any	undelivered	good.	
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As	part	of	the	evaluation,	the	teams	ran	the	ILP	formulations	on	the	MEMCPU	Platform	and	a	best-in-class	
commercial	solver,	Gurobi.

Gurobi	was	accessed	through	the	freely	available	NEOS	Server	for	Optimization.	Gurobi	is	one	of	the	
world’s	best-in-class	commercial	solvers	[10].	Gurobi	is	extremely	efficient	for	many	problems.	However,	
Gurobi	is	subject	to	the	limitations	of	the	branch	and	bound	and	cutting	plane	algorithm.	Thus,	because	the	
problem	is	the	combination	of	multiple	NP-Hard	problems,	the	company’s scheduling	is	expected	to	scale	
exponentially.

The	team	evaluated	the	scaling	of	the	MEMCPU	Platform	and	Gurobi	by	starting	with	a	small	number	of	
goods	and	then	building	up	from	there.	The	figure	below	shows	this	scaling	comparison	and	the	rapid	
exponential	increase	in	the	time	to	solve	on	the	Gurobi	solver.

5. Comparison

At	scale,	3,500	goods	must	be	delivered	over	a	30-day	scheduling	period.	The	results	in	the	table	above	
show	that	Gurobi	can	solve	instances	of	the	problem	that	reach	up	to	80	goods.	However,	at	100	pieces	of	
Cargo,	Gurobi	times	out	after	8	hours	without	finding	a	solution.	On	the	other	hand,	the	MEMCPU	Platform	
converges	to	a	solution	in	seconds	for	all	instances	regardless	of	size,	and	scales	linearly.	Therefore,	the	
full	evaluation	could	only	be	completed	on	the	MEMCPU	Platform.
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5.1 Results

5.1.1 Scheduling of Vessels (stops at offshore facilities)

The	following	graphic	visually	represents	the	schedule	for	each	ship,	showing	which	days	it	will	be	in	port	
(Yellow),	which	days	it	will	be	in	transit	(line),	and	which	days	it	will	be	at	each		offshore	facility	(facilities	
denoted	by	color).		
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5.1.2 Percent of Cargo Delivered

In	this	table,	note	the	“#	ship”	column	under	Actual	and	MemComputing.	The	data	shows	that	the	optimal	
schedule	generated	by	MemComputing	only	requires	7	of	the	original	12	ships.	Further,	the	number	of	
cargo	elements	was	increased	by	15.8%	over	the	original	schedule,	leaving	only	4.2%	of	the	cargo	to	be	
delivered	by	the	Fast	Ships.	

5.1.3 Comparison of Number of Transits

This	table	shows	another	important	measurement	in	optimizing	cargo	delivery,	the	number	of	transits.	
Note	that	the	original	solution	required	176	transits	total	by	the	12	ships.	However,	our	optimized	solution	
only	requires	92	transits	by	the	7	ships,	representing	a	48%	reduction	in	the	number	of	transits.	
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6. Conclusion
6.1 General Conclusion

This	case	study	involved	developing	an	optimal	30-day	schedule	for	delivering	3,500+	goods	from	a	port	
using	a	variety	of	ships	to	various	offshore	facilities.	The	goal	was	to	provide	a	far	more	optimized	shipping	
schedule	while	utilizing	a	minimal	number	of	ships.	

The	team	evaluated	a	state-of-the-art	commercial	solver,	the	Gurobi	Solver.	However,	Gurobi	showed	rapid	
exponential	scaling	demonstrating	the	NP-Hardness	of	the	problem.	At	100	goods,	Gurobi’s computational	
time	exceeded	8hours	to	find	any	feasible	solution.	

The	MEMCPU	Platform	showed	linear	scaling	as	the	number	of	goods	increased.	The	resulting	schedule	
over	30	days	showed	the	following	optimizations.	

• An	increase	of	15.8%	in	the	number	of	goods	delivered	by	the	Slow	Ships	
o This	also	means	a	15.8%	reduction	in	the	goods	delivered	by	the	Fast	Ships,	which	might	

justify	eliminating	1	Fast	Ship.
• A	decrease	in	the	number	of		Slow	Ships	from	12	to	7	(42%	reduction)
• The	total	number	of	transits	decreased	from	176	down	to	92	(48%	reduction).

These	optimizations	should	then	deliver	the	following	benefits.

• $1.5Mmonthly($18M	annual)	reduction	in	ship	leasing	payments.	
• 18kt	reduction	in	carbon	output	based	upon	the	reduction	in	the	number	of	transits.	
• Possibly	other	hard-dollar	and	certainly	additional	soft-dollar	savings.	
• The	ability	to	multiply	the	savings	by	the	number	of	situations	around	the	world	where	they	have	

ocean-based	oil	rigs	and	exploration.	

This	work	has	demonstrated	that	the	MEMCPU	Platform	can	efficiently	solve	NP-Hard	optimization	
problems	that	are	intractable	for	today’s	best-in-class	solutions,	driving	significant	improvements	in	
efficiency	for	various	applications	in	the	energy	sector	and	beyond.	
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6.2 Recommendations for Future Enhancements

The	following	recommendations	will	further	aid	the	scheduler.

• Initially	include	Fast	Ships	in	the	optimization	with	the	ability	to	override	and	repurpose	by	the	
scheduler.	Overriding	will	cause	the	schedule	to	be	re-optimized	based	on	the	(temporary)	
removal	of	a	Fast	Ship.	

• Real-time	updating:	The	system	will	monitor	the	logistics	database	to	provide	the	following	
functionality.
o Automatically	rerun	the	30-day	schedule	and	notify	the	scheduler	of	any	changes	for	

approval.	
o Provide	a	dynamic	schedule	for	the	current	day.	As	cargo	is	being	loaded	or	unloaded,	real-

time	issues	can	be	plugged	in,	and	the	schedule	adjusted	for	the	remainder	of	the	day	(or	
until	the	next	issue).

o From	this,	the	scheduler	will	be	able	to	provide	updates	to	the	workers	on	the	offshore	
facilities	as	to	when	they	can	expect	certain	cargo.	

• What	if	scenario	builder:		The	scheduler	can	adjust	priorities,	cargo	availability	and	offshore	
facility	required	dates	and	then	run	multiple	scenarios	in	parallel	to	choose	the	best	one.	

• Emergency	evacuations:	In	the	event	of	a	hurricane	or	other	situation	that	would	require	
evacuating	workers	from	offshore	facilities,	the	system	could	be	halted	and	immediately	
repurpose	all	ships	to	evacuate	all	personnel	optimally.

• Include	weather	forecast	expectations	in	30-day	schedule	to	refine	the	dynamic	weather	
constraint.

• Optimizing	the	loading	of	cargo	on	the	deck.	In	this	case	study	no	more	than	50%	of	the	deck	space	
could	be	occupied.	However,	the	placement	of	cargo	could	be	optimized	such	that	a	greater	
percentage	of	deck	space	would	be	used.	This	would	potentially	reduce	the	number	of	transits	and	
consequently	the	number	of	required	ships	[11].

• Lastly,	forecasting	could	be	run	out	many	months	vs.	just	30	days.	If	the	amount	of	cargo	is	going	
up	or	down	over	time,	the	system	could	identify	the	optimal	times	to	add	or	remove	ships.	Here	
the	leasing	contract	duration/end	date	for	each	ship	should	be	included	to	enhance	the	accuracy	of	
these	calculations.	
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