
MemComputing Integer Linear Programming

Fabio L. Traversa∗

MemComputing, Inc., San Diego, CA, 92130 CA

Massimiliano Di Ventra†

Department of Physics, University of California, San Diego, La Jolla, CA 92093
(Dated: August 31, 2018)

Integer linear programming (ILP) encompasses a very important class of optimization problems
that are of great interest to both academia and industry. Several algorithms are available that
attempt to explore the solution space of this class efficiently, while requiring a reasonable com-
pute time. However, although these algorithms have reached various degrees of success over the
years, they still face considerable challenges when confronted with particularly hard problem in-
stances, such as those of the MIPLIB 2010 library. In this work we propose a radically different
non-algorithmic approach to ILP based on a novel physics-inspired computing paradigm: Memcom-
puting. This paradigm is based on digital (hence scalable) machines represented by appropriate
electrical circuits with memory. These machines can be either built in hardware or, as we do here,
their equations of motion can be efficiently simulated on our traditional computers. We first de-
scribe a new circuit architecture of memcomputing machines specifically designed to solve for the
linear inequalities representing a general ILP problem. We call these self-organizing algebraic cir-
cuits, since they self-organize dynamically to satisfy the correct (algebraic) linear inequalities. We
then show simulations of these machines using MATLAB running on a single core of a Xeon pro-
cessor for several ILP benchmark problems taken from the MIPLIB 2010 library, and compare our
results against a renowned commercial solver. We show that our approach is very efficient when
dealing with these hard problems. In particular, we find within minutes feasible solutions for one
of these hard problems (f2000 from MIPLIB 2010) whose feasibility, to the best of our knowledge,
has remained unknown for the past eight years.

I. INTRODUCTION

Integer programming represents an important tool to
describe a variety of optimization problems that appear
both in industry and academia [1]. The general format
of integer programming consists of an objective function
to be minimized over a set of variables and subjected to
a set of constraints defined by linear inequalities among
variables. In addition, the variables are constrained to
be integer values. If the objective function is linear, then
we properly refer to Integer Linear Programming (ILP),
which is the problem class we consider in this paper.
Due to its fundamental and practical importance, ILP

is still extensively studied in both academia and indus-
try. Several general-purpose open source [2–6] and com-
mercial solvers [7–10] have been developed together with
specialized solvers specifically optimized for ILP, with
additional structures usually developed for some specific
projects [11–14].
Solutions to ILP can be approached via different algo-

rithms, both heuristics [13, 15, 16] and exhaustive [1, 17–
19]. Quite often, exhaustive methods are also called
“complete algorithms”. The complete algorithm for ILP
that is most commonly employed is a combination of cut-
ting planes and branch-and-bound, also known as the
branch-and-cut algorithm [1]. All these solvers have

∗ email: ftraversa@memcpu.com
† email: diventra@physics.ucsd.edu

demonstrated several degrees of success on a variety of
ILP problems [20–24], but they still struggle when faced
with particularly hard problems such as those within the
MIPLIB 2010 library [25].
In this paper, we present a novel and general purpose

non-algorithmic approach to the solution of ILPs based
on thememcomputing paradigm previously introduced by
two of us (FLT and MD) [26]. This new approach, which
stands for computing with and in memory [27], cannot
be classified as stochastic search, since it does not use a
probabilistic scheme, nor a trial and error strategy. In ad-
dition, memcomputing does not employ educated guesses
and known structures of the problem to define a set of in-
structions for a program to find solutions to the problem
at hand. In other words, the memcomputing approach is
not algorithmic [28].
On the contrary, a given problem is embedded into an

electronic circuit (a possible realization of Memcomput-
ing Machines (MM) [26, 28, 29]) whose time evolution
ultimately relaxes to a steady state (equilibrium) that
expresses the solution of the original problem [28, 29]).
If these circuits are properly designed to satisfy several
mathematical properties (see [28, 29]), they efficiently
converge to the solution of the given problem, and chaos
or periodic orbits can be avoided [30, 31]. However, for
the case of optimization problems, the method does not
provide proof of optimality for a given solution, nor does
it detect the infeasibility of a problem.
In order to approach ILP we have first designed novel

MMs based on the concept of self-organizing algebraic

gates (SOAGs) we introduce in Section III. SOAGs are

ar
X

iv
:1

80
8.

09
99

9v
1

 [
cs

.E
T

]
 2

9
A

ug
 2

01
8

mailto:email: ftraversa@memcpu.com
mailto:email: diventra@physics.ucsd.edu

2

the building blocks of the MM to solve ILP and are de-
signed so that their dynamics self-organize towards the
equilibrium that represents the solution satisfying the
constraints of the ILP.
We have used this approach to find solutions for a se-

lection of hard benchmark problems from the MIPLIB
2010 library [25]. In Section II we introduce the ba-
sic nomenclature for ILP. In Section III we discuss the
memcomputing approach for this class of problems, and
in Section IV we provide and discuss numerical results by
simulating the corresponding MMs to solve several open
problems from the MIPLIB 2010 library. We then com-
pare our performances against a renowned commercial
solver (Gurobi) and show the efficiency of our approach,
which has been able to find within minutes feasible solu-
tions for one of these hard problems (f2000 from MIPLIB
2010) whose feasibility, to the best of our knowledge, has
remained unknown for the past eight years.

II. INTEGER PROGRAMMING BASICS

Let us consider a restricted version of ILP for which
we have only binary variables. In this case, the problem
can be formalized as follows:

min
{xj}

∑

j

fjxj (1a)

Aeqx =beq (1b)

Aineqx ≤bineq (1c)

xj ∈ Z2 for each j (1d)

where x = {x1, ..., xn} with xj ∈ Z2 for any j = 1, ..., n,
fj ∈ R, Aeq ∈ R

meq×n, beq ∈ R
meq , Aineq ∈ R

mineq×n

and bineq ∈ R
mineq with meq and mineq ∈ N. This is

also known as 0-1 linear programming and it is one of
the Karp’s 21 NP-complete problems [32].
A solution x̄ of the ILP (1) is an assignment to x such

that all constraints (1b)–(1d) are satisfied. The solution
x̄ is said to be sub-optimal if

∑
j fj x̄j ≥ min{x}

∑
j fjxj

where x satisfies (1b)–(1d). We also define the objective,
O, of the problem (1) as O = min{x}

∑
j fjxj .

A lower bound for the ILP objective can be calculated
efficiently in most cases by solving the relaxation problem
obtained by replacing the constraint (1d) with

xj ∈ [0, 1] for each j. (1d′)

It is easy to prove that the objective OLP of the linear
programming problem (1a)–(1c), (1d′) satisfies OLP ≤
O.
Finally, given a lower bound Olb of (1) a gap from opti-

mality can be defined. Some commercial solvers estimate
this gap as

gap =
Obest −Olb

Obest

(2)

where Obest is the best objective found so far while Olb

is the best lower bound to the objective found so far.

Self-Organizing Algebraic Gate� ��� − �

�
DCM

DCMDCM

DCM DCM

Dynamic correction

module

DCM

Read Voltages

Inject Current

FIG. 1. Sketch of a Self-Organizing Algebraic Gate. All ter-
minals allow a superposition of incoming and outgoing signals
from the surrounding circuit. The central unit processes the
signals in order to satisfy a liner algebraic relation consis-
tent with the requirement of the “out” terminal. The self-
organization is enforced by the Dynamic Correction Modules
that read voltages from all terminals and inject a current to
the appropriate terminal as long as the algebraic relation is
not satisfied.

Therefore in many cases OLP can be used as a lower
bound for the gap if no better lower bound is available.

III. MEMCOMPUTING STRATEGY

The memcomputing approach to ILP problems is
based on the concept of Self-Organizing Algebraic Gates
(SOAGs). SOAG is a novel circuit design developed at
MemComputing, Inc. [33] by one of the authors (FT).
It is inspired by the previous work on Self-Organizing
Logic Gates (SOLGs) [29, 34]. Both SOLGs and SOAGs
are building blocks for practical realizations of Universal
Memcomputing Machines (UMM) [26, 28, 35], in partic-
ular their digital (hence scalable) sub-set: digital mem-
computing machines (DMMs) [29].
The main properties of SOLGs have been recently in-

vestigated and it has been proved that a proper de-
sign leads to Self-Organizing Logic Circuits (SOLCs)
that demonstrate long-range order and topological ro-
bustness [36, 37]. Moreover, SOLCs can be designed in
such a way that persistent chaotic and oscillatory be-
havior can be avoided [30, 31]. SOLCs have also been
proved to be very efficient in a variety of combinato-
rial optimization problems such as maximum satisfiabil-
ity (MAXSAT) [38, 39], quadratic unconstrained binary
optimization (QUBO), spin-glasses [40], and pre-training
of deep-belief networks [41].
SOLCs can be classified as digital realizations of UMMs

because they accept inputs and return outputs that are
digital in nature. Input and output are related to the
circuit realization by associating logical 0s or 1s to volt-
ages that are below or above a threshold, respectively.
In this way, the required precision in writing inputs and
reading outputs is finite and independent of the size of

3

� � � � � �

� � � � � �

��� = ������� ≤ ����

FIG. 2. Sketch of a Self-Organizing Algebraic Circuit
(SOAC). SOAGs are connected together in an architecture
that directly maps the ILP into the SOAC.

the problem at hand. However, the transition function
of these machines (namely the function that maps input
to output) is physical (analog) and takes full advantage
of the collective state of the system to process informa-
tion [29, 35, 42]. We reiterate though that, despite the
physical nature of the transition function, DMMs can
easily scale because they do not require precision that
increases with the size of the problem. Rather, they can
handle, ideally, unbounded problem sizes [39].
SOAGs share the same principles and scalability ad-

vantages of SOLGs but their circuit is designed to
self-organize toward an algebraic relation rather than a
boolean relation as for SOLGs. In this work, the SOAGs
have been designed to satisfy linear relations between
boolean variables as a particular case of algebraic rela-
tions (see Fig. 1). Further extensions of this design will
include mixed integer and continuous variables, as well
as nonlinear algebraic relations.
By connecting together SOAGs, we then assemble a

Self-Organizing Algebraic Circuit (SOAC), see Fig. 2.
The SOAC collectively self-organizes in order to satisfy
the relations embedded in the gates. In this way, it is
trivial to embed the problem (1) directly into the SOAC.
Each one of the equations in (1b) and (1c) is mapped di-
rectly into a SOAG, while (1a) can be easily reformulated
as an extra linear inequality

∑

j

fjxj ≤ b̃. (1a′)

where b̃ is an extra parameter that can be dynamically
changed in the circuit in order to find solutions of in-
creasing quality, each time closer to the global optimum.
Finally, (1d) is naturally embedded in the circuit since
inputs and outputs are digital.
Like the SOLCs, the ultimate physical electrical cir-

cuit representing a SOAC contains active and passive el-
ements, with and without memory (internal state vari-
ables) [28, 29]. The corresponding electrical circuit can
be built with available complementary metaloxide semi-

conductor (CMOS) technology. However, since its com-
ponents are non-quantum, the ordinary differential equa-
tions describing it can be efficiently simulated on our
modern computers. These equations are of the type

ẏ = F (y), y(t = 0) = y0, (3)

with y a vector describing all voltages/currents and in-
ternal state variables of the system, and F the flow vec-
tor field describing its dynamics [28, 29]. These non-
linear differential equations are then integrated numer-
ically in time from a given (random) initial condition
y(t = 0) = y0 up to a time out (TO) we set at the outset.
Finally, the voltages of the state y(t = TO) represent the
solution x̄ of the ILP (1) at hand. Below, we present the
results of these numerical simulations.

IV. NUMERICAL RESULTS

We consider as benchmark instances, problems from
the MIPLIB 2010 library [25]. In particular, we con-
sider the class of open problems, and we focus on the
0-1 programming ones only. This represents a set of 24
benchmark problems. The open problems are classified
as problems for which either the optimal solution has
never been found, or proved to be optimal, or, in some
cases, the feasibility of the problem is unknown. This
benchmark is a unique collection of problems from sev-
eral industries or competitions for solvers. It represents
a standard benchmark that developers use to test their
solvers.

Parameter Name Parameter Value

TimeLimit 3380
Presolve 2
Method 3
MIPGapAbs 0
MIPGap 0

TABLE I. Gurobi 8.0 parameters used in the tests. The same
values for Gurobi solver parameters were used across all mod-
els. The TimeLimit parameter was set to 3380 seconds to al-
low a 220 second buffer for cloud server booting and shutdown
while staying within one hour of total machine time. The Pre-
solve parameter was set to 2 (maximum) in expectation that,
more often than not, any additional presolve time would be
offset by finding improved solutions earlier, given the known
difficulty of the models. The Method parameter was set to 3
(concurrent) to allow maximum use of the 16 threads at the
root node of the model in addition to using all 16 threads by
default beyond the root node. The MIPGapAbs and MIPGap
parameters were both set to 0 to ensure the Gurobi solver
would not terminate at a suboptimal solution prior to the
time limit.

In order to compare the performance of the Mem-
Computing ILP solver (we refer to it as “MemCPU”),
we have run these problems also using the Gurobi 8.0

4

0

2

4

6

8

10

12

14

Better

Objective

Same

Objective

Better

Objective

Same

Objective

3600s

300s

3600s

300s

MemCPU Gurobi

FIG. 3. Histogram of better objectives found by MemCPU
or Gurobi 8.0 from Table II. The problems for which both
solvers did not find any feasible solution have been excluded.

solver [7]. Gurobi is a renowned commercial solver for
mixed-integer programming (MIP) used worldwide. In
most cases it is employed as a reference because of its
high-quality performance. Gurobi is a complex agglom-
erate of algorithms and heuristics to improve the time
to, and quality of the solution of mixed-integer program-
ming problems [43]. The main algorithm implemented
in Gurobi is the branch-and-bound [44]. However, the
latter is boosted by pre-processing, including variable
pre-solving, cutting planes, and heuristics. In addition,
Gurobi employs sophisticated algorithms and heuristics
in order to further accelerate the branch-and-bound pro-
cedure [43]. The result is a collection of state-of-the-art
algorithms, solution strategies and optimization toward
the solution of MIP problems.

We stress here once more the major difference between
our MemCPU solver and Gurobi. The former solves dif-
ferential equations of a physical system that represents
the original ILP problem. Gurobi, instead, is a sophis-
ticated but still traditional (combinatorial) algorithmic

approach. In other words, the memcomputing approach
first transforms the original optimization problem into
a Physics problem, and then simulates the dynamics of
such a physical system, while maintaining the digital
structure of inputs and outputs [28].

We have compared MemCPU versus Gurobi 8.0 in two
different regimes: 300 seconds and 3380 seconds total
running time. The Gurobi Solver was run on the Gurobi
Cloud using an Amazon Web Services c4.4xlarge instance
having 16 CPU cores and 30 GB RAM and the settings
are described in Table I

The MemComputing, Inc. solver, MemCPU, has been
implemented in interpreted MATLAB and run on an In-
tel Xeon 6148 with 192 GB RAM using only up to 10
cores at a time. However, the multi-core processing has
only been used to run up to 10 identical versions of the

solver (replicas) in parallel using parpool. The parpool
function guarantees that each replica does not use multi-
threading. Therefore, each replica used exactly one core.

Each problem has been processed by MemCPU gener-
ating a SOAC representing the ILP problem without any
pre-processing or variable pre-solving. Since MemCPU
simulates an electronic circuit, there are physical param-
eters to be set that accelerate the self-organizations of
the circuit depending on the problem at hand. There-
fore, these parameters needed to be tuned [45]. The
replicas have been used to run MemCPU with different
initial conditions and different parameter sets for tuning
purposes. The best outcome from the replicas has been
selected as output.

In Table II the objectives after 300s and 3380s runs are
reported for both MemCPU and Gurobi 8.0 using the
aforementioned Gurobi parameter set. In Fig. 3 there
is a direct comparison between MemCPU vs Gurobi by
counting the number of problems for which each solver
found solutions with better objective function values
than the other. From the overall comparison we can see
that the direct approach of MemCPU to solving ILP re-
sulted in finding solutions with better objective function
values on more than twice as many problems.

In the following subsections we discuss in detail some
relevant results and characteristics of the MemCPU
solver.

1. The f2000 Problem

One very interesting result that deserves to be dis-
cussed separately is related to the outcome of MemCPU
for the f2000 problem of the MIPLIB 2010 library. The
f2000 problem belongs to the class of hard random prob-
lems [44] and was selected from the pseudo-boolean com-
petition 2010 [46], that was a special event of the satisfia-
bility (SAT) 2010 conference. Since then, f2000 has been
part of the next editions of the competition and also part
of the open problems of the MIPLIB 2010 library [25].

Despite many groups from both SAT and MIP commu-
nities having tried, using both complete and incomplete
solvers, to find feasible solutions for this problem during
the past eight years, to the best of our knowledge, no
one has been able to find a feasible solution yet. Cur-
rently the feasibility of f2000 is classified as “unknown”
by MIPLIB [25].

Running this problem using the MemCPU solver, we
already found, within 60s, the first feasible solution to
the problem, and for longer run times more solutions
with objectives of increasing quality (see also Sec. IV 4).
This result is then representative of both the uniqueness
and power of the memcomputing approach.

5

MemCPU Gurobi 8.0

File Name 300s 3380s 300s 3380s

bab1 -197710.06 -202800.20 -218764.89 -218764.89
bab3 TO TO -654569.46 -656193.04
circ10-3 362.00 312.00 TO 386.00
datt256 TO TO TO TO
ds-big 29780.20 6902.00 762.93 762.93
ex1010-pi 237.00 237.00 240.00 238.00
f2000 1950.00 1846.00 TO TO
ivu06-big TO 349.02 9416.00 159.96
methanosarcina 2734.00 2731.00 2756.00 2737.00
neos-952987 TO TO TO TO
ns1853823 144000.00 84000.00 284000.00 124000.00
ns894236 17.00 17.00 17.00 17.00
ns894786 13.00 13.00 14.00 13.00
ns903616 20.00 19.00 20.00 19.00
pb-simp-nonunif 87.00 71.00 75.00 42.00
ramos3 186.00 186.00 252.00 244.00
rmine14 -4208.27 -4223.09 -194.06 -4283.04
rmine21 -9340.90 -10392.05 TO -214.18
rmine25 -13295.47 -15037.29 TO -185.33
sts405 340.00 340.00 342.00 342.00
sts729 617.00 617.00 650.00 648.00
t1717 206003.00 192840.00 201342.00 201342.00
t1722 126537.00 119071.00 129822.00 119764.00
zib01 TO TO TO TO

TABLE II. Objectives found after running MemCPU and Gurobi 8.0 for 300 seconds and 3380 seconds. Objectives are in
arbitrary units and TO = Time Out. The problems are from the class “open” of MIPLIB 2010 library [25] restricted to the
0-1 programming only.

2. Deep Diving Objectives

Looking closer at Table II, we can see that for many
problems, irrespective of their size and structure, Mem-
CPU found very quickly much better objectives. This
shows that, for these problems, solutions with objectives
much closer to the global minimum are strong attractors
for the SOAC. For some of them, the convergence was so
quick that Gurobi did not find in one hour what Mem-
CPU found in five minutes, possibly demonstrating the
capacity for orders of magnitude speed-up of the mem-
computing approach versus the traditional algorithmic
one.
For some of the problems (e.g., ramos3, ns1853823,

ex1010-pi), it is also possible that MemCPU may have
found the global optimum since no refinement in the ob-
jective was found after minutes of run time. However,
since MemCPU does not provide proof of optimality, we
could not prove mathematically the validity of this state-
ment.
Finally, it is worth mentioning that for the problems

for which Gurobi performed better than MemCPU, from
its log file (and also comparing the results for 300s and
3380s runs) it is clear that Gurobi’s pre-processing was
particularly effective at simplifying the problem which
may have contributed to it finding a very good initial
feasible solution. Instead, as we have already discussed,

MemCPU does not include any pre-processing and it
starts from random initial conditions. In addition, for
these problems, both the MemCPU and Gurobi param-
eter tuning may not necessarily be optimal. At the mo-
ment, MemComputing, Inc. is working on an automatic
routine to predict and fine-tune the MemCPU parame-
ters [45]. Furthermore, since the design of SOAGs is
not unique, further improvements that may accelerate
the simulations and provide better solutions may be pos-
sible. Work along these lines is underway.

3. Scaling with Problem Size

The rmine benchmark is a series of problems that
model the open pit mining problem [25]. This problem
is industrially relevant and has been heavily studied by
the MIPLIB organizers themselves in the past years [47].
Moreover, the MIPLIB 2010 library contains 5 instances
with increasing numbers of variables depending on the
refinements used to represent the problem. Therefore,
this particular problem provides a benchmark for study-
ing the scaling properties of both solvers.
We have then considered runs of 3380 seconds to assess

the scaling properties for this benchmark. However, we
include in the analysis only 4 out of the 5 instances be-
cause the smallest one (rmine6) belongs to the “easy”

6

10
5

10
6

variables

10
-1

10
0

10
1

10
2

10
3

10
4

g
ap

,
%

10
1

10
2

10
3

10
4

ti
m

e,
 s

Gurobi 8.0

MemCPU

interpolation = 10
-7.36

×(#var)
1.75

Gurobi 8.0

FIG. 4. Left y-axis: The gap defined in Eq. (2) for the rmine
benchmark for both MemCpu and Gurobi 8.0. Right y-axis:
Gurobi 8.0 pre-processing time.

category. Therefore, it is exactly solved in less than
3380s.
In Fig. 4 we report the gap defined in Eq. (2) for

both Gurobi 8.0 and MemCPU after 3380s run. Gurobi
converges very fast for the small instances to objectives
smaller than 1%. However, by increasing the number
of variables (namely, by increasing problem refinement),
Gurobi was unable to complete the root simplex/barrier
within the time limit and, consequently, showed much
worse performance, providing solutions with objectives
on the order of tens of thousands of %. On the other
hand, MemCPU, even though, for smaller instances, had
a slightly slower convergence to find solutions, it main-
tained the scaling also at high numbers of variables, pro-
viding a solution at about 1% gap for very large instances
as well.
In order to understand better the reason for this differ-

ence between MemCPU and Gurobi, from the log file of
the latter we found that the pre-processing time for those
instances grew almost quadratically as shown in Fig. 4.
We acknowledge that this could be largely a consequence
of having set the Presolve parameter to its maximum
value. However, the pre-processing is only the starting
point of the solution process used by Gurobi that for
these problems can simply grow unbounded. This is eas-
ily seen, for example in the rmine21 problem, for which
Gurobi was able to finish the pre-processing in a rea-
sonable amount of time, but then spent 39 minutes on

the root simplex/barrier, and then no refinement of the
gap was made in the remaining time by the branch-and-
bound process.

4. Data Availability

In order for the interested reader to check all the re-
sults discussed in the previous sections, and confirm the
validity of what we have reported in this paper, we have
made available all solution files on MemComputing, Inc.
webpage: http://memcpu.com/downloads. The files are
in the .sol format, and each file name corresponds to the
name of the problem that can be downloaded from the
MIPLIB 2010 library [25].
By using these data files the reader can use any solver

for ILP (for instance Gurobi), and verify that all the
objectives found by MemCPU and reported in Table II
are indeed feasible solutions.

V. CONCLUSIONS

In summary, we have shown how to employ digi-

tal (hence scalable) memcomputing machines to tackle
the important problem class of integer linear program-
ming problems. We have proposed a new set of self-
organizing gates that self-organize to satisfy algebraic
relations. When assembled together, these gates form
a self-organizing circuit specifically designed to solve a
given ILP problem.
We have then simulated the corresponding equations

of motion of these circuits to find solutions to a vari-
ety of benchmark ILP problems as reported in the MI-
PLIB 2010 library. We have compared our results with a
well-known commercial solver (Gurobi). Our solver is ex-
tremely efficient in finding very good objectives for these
problems.
In particular, we have found within minutes feasible

solutions for the f2000 ILP problem (of MIPLIB 2010)
whose feasibility, to the best of our knowledge, has re-
mained unknown for the past eight years. We have also
shown that our approach maintains a high quality of so-
lutions with increasing size of the problem.
Since our solver has been implemented using inter-

preted MATLAB, there is plenty of room to speed up the
reported calculations. In addition, since memcomputing
machines employ non-quantum systems, they can be eas-
ily implemented in hardware using standard electronic
components, thus offering a realistic path to real-time
computing for these, and other, important combinatorial
optimization problems.

[1] Schrijver. Theory of Linear Integer Programming (John
Wiley & Sons, 1998).

[2] Gnu linear programming kit, version 4.32. URL http:

//www.gnu.org/software/glpk/glpk.html.

[3] Forrest, J. et al. Coin-or/cbc: Version 2.9.9 (2018).
[4] Gleixner, A. et al. The SCIP Optimization

Suite 6.0. ZIB-Report 18-26, Zuse Institute Berlin
(2018). URL http://nbn-resolving.de/urn:nbn:de:

http://memcpu.com/downloads
http://www.gnu.org/software/glpk/glpk.html
http://www.gnu.org/software/glpk/glpk.html
http://nbn-resolving.de/urn:nbn:de:0297-zib-69361

7

0297-zib-69361.
[5] Ralphs, T. et al. Coin-or/symphony: Version 5.6.16

(2017).
[6] Berkelaar, M., Eikland, K. & Notebaert, P. lp solve 5.5,

open source (mixed-integer) linear programming system.
Software (2004). URL http://lpsolve.sourceforge.

net/5.5/.
[7] URL http://www.gurobi.com.
[8] URL https://www.ibm.com/analytics/

cplex-optimizer.
[9] URL http://www.fico.com/en/products/

fico-xpress-optimization.
[10] URL http://mathworks.com.
[11] Applegate, D., Bixby, R., Chvatal, V. & Cook, W. Con-

corde tsp solver (2006).
[12] Floudas, C. A. & Lin, X. Mixed integer linear program-

ming in process scheduling: Modeling, algorithms, and
applications. Annals of Operations Research 139, 131–
162 (2005).

[13] Boston, K. & Bettinger, P. An analysis of monte carlo
integer programming, simulated annealing, and tabu
search heuristics for solving spatial harvest scheduling
problems. Forest Science 45, 292–301 (1999).

[14] Sørensen, M. & Stidsen, T. R. Hybridizing inte-
ger programming and metaheuristics for solving high
school timetabling. In Proceedings of the 10th interna-
tional conference of the practice and theory of automated
timetabling, 557–560 (2014).

[15] Danna, E., Rothberg, E. & Pape, C. L. Exploring relax-
ation induced neighborhoods to improve MIP solutions.
Mathematical Programming 102, 71–90 (2004).

[16] Glover, F. HEURISTICS FOR INTEGER PROGRAM-
MING USING SURROGATE CONSTRAINTS. Deci-
sion Sciences 8, 156–166 (1977).

[17] Barnhart, C., Johnson, E. L., Nemhauser, G. L., Savels-
bergh, M. W. & Vance, P. H. Branch-and-price: Column
generation for solving huge integer programs. Operations
research 46, 316–329 (1998).

[18] Benders, J. F. Partitioning procedures for solving mixed-
variables programming problems. Numerische mathe-
matik 4, 238–252 (1962).

[19] Hooker, J. N. & Ottosson, G. Logic-based benders
decomposition. Mathematical Programming 96, 33–60
(2003).

[20] Abara, J. Applying integer linear programming to the
fleet assignment problem. Interfaces 19, 20–28 (1989).

[21] Kroon, L. et al. The new dutch timetable: The or revo-
lution. Interfaces 39, 6–17 (2009).

[22] Stahlbock, R. & Voß, S. Operations research at container
terminals: a literature update. OR spectrum 30, 1–52
(2008).

[23] Melo, M. T., Nickel, S. & Saldanha-Da-Gama, F. Fa-
cility location and supply chain management–a review.
European journal of operational research 196, 401–412
(2009).

[24] Bard, J. F., Binici, C. et al. Staff scheduling at the united
states postal service. Computers & Operations Research
30, 745–771 (2003).

[25] URL http://miplib.zib.de.
[26] Traversa, F. L. & Di Ventra, M. Universal memcomput-

ing machines. IEEE Trans. Neural Netw. Learn. Syst.
26, 2702 (2015).

[27] Di Ventra, M. & Pershin, Y. V. The parallel approach.
Nature Physics 9, 200–202 (2013).

[28] Di Ventra, M. & Traversa, F. L. Perspective: Memcom-
puting: Leveraging memory and physics to compute effi-
ciently. Journal of Applied Physics 123, 180901 (2018).

[29] Traversa, F. L. & Di Ventra, M. Polynomial-time so-
lution of prime factorization and np-complete problems
with digital memcomputing machines. Chaos: An In-
terdisciplinary Journal of Nonlinear Science 27, 023107
(2017).

[30] Di Ventra, M. & Traversa, F. L. Absence of chaos in
digital memcomputing machines with solutions. Phys.
Lett. A 381, 3255 (2017).

[31] Di Ventra, M. & Traversa, F. L. Absence of periodic or-
bits in digital memcomputing machines with solutions.
Chaos: An Interdisciplinary Journal of Nonlinear Sci-
ence 27, 101101 (2017).

[32] Garey, M. R. & Johnson, D. S. Computers and In-
tractability; A Guide to the Theory of NP-Completeness
(W. H. Freeman & Co., New York, NY, USA, 1990).

[33] URL www.memcpu.com.
[34] Di Ventra, M. & Traversa, F. L. Self-organizing logic

gates and circuits and complex problem solving with
self-organizing logic circuits, US patent application No.
15/557,641, US patent No. 9,911,080 (2018).

[35] Traversa, F. L., Ramella, C., Bonani, F. & Di Ventra,
M. Memcomputing NP-complete problems in polynomial
time using polynomial resources and collective states.
Science Advances 1, e1500031 (2015).

[36] Di Ventra, M., Traversa, F. L. & Ovchinnikov, I. V. Topo-
logical field theory and computing with instantons. Ann.
Phys. (Berlin) 1700123 (2017).

[37] Bearden, S. R., Manukian, H., Traversa, F. L. & Di Ven-
tra, M. Instantons in self-organizing logic gates. Physical
Review Applied 9 (2018).

[38] Traversa, F. L., Cicotti, P., Sheldon, F. & Di Ventra, M.
Evidence of exponential speed-up in the solution of hard
optimization problems. Complexity 2018, 1–13 (2018).

[39] Sheldon, F., Cicotti, P., Traversa, F. L. & Di Ventra, M.
Stress-testing memcomputing on hard combinatorial op-
timization problems. Preprint arXiv:1807.00107 (2018).
http://arxiv.org/abs/1807.00107v1.

[40] Sheldon, F., Traversa, F. L. & Di Ventra, M. Taming a
non-convex landscape with long-range order. In prepara-
tion .

[41] Manukian, H., Traversa, F. L. & Di Ventra, M. Accelerat-
ing deep learning with memcomputing. arXiv:1801.00512
(2018).

[42] Traversa, F. L. Collective Computing. In preparation
(2018).

[43] URL http://www.gurobi.com/resources/

getting-started/mip-basics.
[44] Arora, S. & Barak, B. Computational Complexity: A

Modern Approach (Cambridge University Press, 2009).
[45] Foertsch, J., Qian, Z. & Traversa, F. L. Tuning and

prediction of optimal parameters for algorithm configu-
ration. In preparation (2018).

[46] URL http://www.cril.univ-artois.fr/PB10.
[47] Shinano, Y. et al. Solving open MIP instances with

ParaSCIP on supercomputers using up to 80,000 cores.
In 2016 IEEE International Parallel and Distributed Pro-
cessing Symposium (IPDPS) (IEEE, 2016).

http://nbn-resolving.de/urn:nbn:de:0297-zib-69361
http://lpsolve.sourceforge.net/5.5/
http://lpsolve.sourceforge.net/5.5/
http://www.gurobi.com
https://www.ibm.com/analytics/cplex-optimizer
https://www.ibm.com/analytics/cplex-optimizer
http://www.fico.com/en/products/fico-xpress-optimization
http://www.fico.com/en/products/fico-xpress-optimization
http://mathworks.com
http://miplib.zib.de
www.memcpu.com
http://www.gurobi.com/resources/getting-started/mip-basics
http://www.gurobi.com/resources/getting-started/mip-basics
http://www.cril.univ-artois.fr/PB10

	MemComputing Integer Linear Programming
	Abstract
	I Introduction
	II Integer Programming Basics
	III MemComputing Strategy
	IV Numerical Results
	1 The f2000 Problem
	2 Deep Diving Objectives
	3 Scaling with Problem Size
	4 Data Availability

	V Conclusions
	 Bibliography

